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Abstract 
A computational fluid dynamics (CFD) approach is presented to model the blood flow through the human circula- 

tory system under altered gravity conditions. Models required for CFD simulation relevant to major hemodynamic 
issues are introduced such as non-Newtonian flow models governed by red blood cells, a model for arterial wall motion 
due to fluid-wall interactions, a vascular bed model for outflow boundary conditions, and a model for auto-regulation 
mechanism. The three-dimensional unsteady incompressible Navier-Stokes equations coupled with these models are 
solved iteratively using the pseudocompressibility method and dual time stepping. Moving wall boundary conditions 
from the first-order fluid-wall interaction model are used to study the influence of arterial wall distensibility on flow 
patterns and wall shear stresses during the heart pulse. A vascular bed modeling utilizing the analogy with electric 
circuits is coupled with an auto-regulation algorithm for multiple outflow boundaries. For the treatment of complex 
geometry, a chimera overset grid technique is adopted to obtain connectivity between arterial branches. For code 
validation, computed results are compared with experimental data for steady and unsteady non-Newtonian flows. 
Good agreement is obtained for both cases. In sin-type Gravity Benchmark Problems, gravity source terms are added 
to the Navier-Stokes equations to study the effect of gravitational variation on the human circulatory system. This 
computational approach is then applied to localized blood flows through a realistic carotid bifurcation and two Circle 
of Willis models, one using an idealized geometry and the other model using an anatomical data set. A three- 
dimensional anatomical Circle of Willis configuration is reconstructed from human-specific magnetic resonance 
images using an image segmentation method. The blood flow through these Circle of Willis models is simulated to 
provide means for studying gravitational effects on the brain circulation under auto-regulation. 

Introduction 
During long-duration space missions, astronauts have to 

adapt themselves to the altered circumstance of micrognv- 
ity. Blood circulation as well as body fluids distribution 
undergoes significant adaptation during and after space 
flight. Much study on physiological changes under weight- 
lessness has been performed since the early days of the 
space program [I]. In particular, cardiovascular research in 
conjunction with the Space Shuttle program has included 
diverse physiological h c t i o n s  affected by the nervous 
system such as heart rate, blood pressure, hormone release, 
and respiration. The altered cardiac output due to decondi- 
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tioning during flight and readaptation after the flight will 
impact blood circulation in the human body. Especially, this 
altered blood supply in the brain and consequent oxygen 
supply to certain parts of the brain will make non-negligible 
impact on long-duration space flight. In flights on Earth, a 
gravitational force over 8G causes unconsciousness, so- 
called, blackout and a ,mvitational force below -3G makes 
the retina engorged with blood, red-out. To assess the im- 
pact of changing gravitational forces on space and earth 
flights, it will be essential to quantify the flow characteris- 
tics in the brain under varying -wvity conditions. Analysis 
of blood circulation in the brain as wet! as other parts of 
human body such as heart or kidney requires the capability 
to simulate blood flows in large arteries and capillaries. 

In addition to the altered gravitational forces, specific 
shapes and connections of arteries in the brain, so-called 
Circle of Willis. vary in the human population [?, 31. Con- 
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sidering the geometric variations, pulsatile unsteadiness, 
and moving walls, computational approach in analyzing 
altered b!ood circulation will thus offer an economical al- 
ternative to experiments in vivo or in vitro. 

Technical challenges of the present study relevant to ma- 
jor hemodynamic issues can be suinmarized as i) anatomi- 
cally complex geometry of vascular networks, ii) non- 
Newtonian modeling of the huinan blood, iii) distensible 
wall motion due to heart pulse, iv) vascular bed and auto- 
regulation modeling for outflow boundary conditions, and 
v) gravitational effects. Recently, three-dimensional recon- 
struction techniques have been used co oblilin 1he accurate 
anatomical vasculature from magnetic resonance imaging 
(MRI), magnetic resonance angiograln (MRA), and com- 
puted tomography (CT) [4-61. Computational simulations 
coupled with these medical diagnostic imaging techniques 
can provide physicians with patient-specific information to 
predict the outcome of surgical procedures. 

Blood flow characteristics are dominated by the presence 
of red blood cells since red blood cells constitute about 40 
to 45 percent of human blood by volume. Red blood cell 
aggregation at low shear rates makes the apparent blood 
viscosity increase. Conversely, the viscosity decreases at 
higher shear rates due to red blood cell deformation. Three 
different experiments [7-91 show this so-called shear- 
thinning phenomenon (Fig. 1). Various non-Newtonian 
models have been developed by curve-fitting to the experi- 
mental data [lo]. It is commonly assumed that the apparent 
blood viscosity is a hnction of shear rate alone. In the pre- 
sent study, two non-Newtonian models are adopted among 
them and assessed through steady and unsteady non- 
Newtonian flow simulations. 

Relative diamctcr change due to the heart pulse was 
found to be up to about 10 percent in common carotid arter- 
ies of young people [ 111. It was also reported that the mean 
diameter change in large cerebnl arteries (e.g., the carotid, 
the middle cerebral or the vertebral arteries) was less than 4 
percent whereas the smaller arteries such as anterior cere- 
bral arteries showed 21 percent diameter changes under 
moderate changes in the mean blood pressure (30 mmHg 
with 16 mmHg deviation) [12]. On Earth, gravity pulls the 
blood to the feet. In standing posture, the blood pressure in 
the feet can be about 100 mmHg higher than at the heart 
(approximately 100 mmI3g) and 20 to 40 inmHg lower in 
the brain. In space, blood pressure equalizes and becomes 
unifoiin throughout the human body. Consequently, the 
arterial wall distensibility due to gravity results in the fluid 
redistribution throughout the entire body. In the present 
study, a first-order approximation [13, 141 to the complex 
behavior of the arterial wall is extended to three- 
dimensional problems by assuming that blood vessels have 
circular, thin and elastic walls. It has been found that if the 
wall is sufficiently thin, the computed results from finite 
element methods are very similar to that calculated by this 

approximation [ 15, 161. 
To accomplish the simulation at a computationally man- 

ageable level, minor arteries such as arterioles, venules, and 
capillaries need to be truncated. At the truncated positions 
where flow information is hard to measure accurately in 
vivo, appropriate outflow boundary conditions are necessary. 
Alternative approaches using the analogy of arterial net- 
works to electric circuits have been applied to supply the 
adequate bounday conditions for three-dimensional com- 
putations [6, 171. To simulate the feedback mechanism in 
peripheral resistance of the brain arterial tree, a numerical 
auto-Ieguiarion rnodei i i S j  was cieveioped baseci on controi 
theory and compared it with the experiment [19]. In the 
present study, a hybrid approach is presented for the prob- 
lems with multiple outflow boundaries by combining the 
analogy with electric circuits and the mechanism of arterio- 
lar auto-regulation. 

There have been a few studies about computational simu- 
lations of blood circulation in the brain. Blood flow in pa- 
tient-specific cases taken from MRA images was simulated 
as a planning tool for neuro-surgical and interventional pro- 
cedures [4]. It was reported that the variants of arterial ge- 
ometry and the proper hnctioning of the auto-regulation are 
ciucial in determining the correct amount of blood supply 
to the brain [IS, 201. To the authors' knowledge, the present 
study is one of the first simulations of the blood circulation 
in the human brain under altered gravity conditions using 
non-Newtonian flow models within deformable arterial 
walls. 

Computational Approach 
Governing equations 

Blood flow through the heart and blood vessels is un- 
steady, viscous, and incompressible. Fluids in the heart and 
larger vessels have been assumed to be Newtonian. For 
instance, the Newtonian flows through artificial heart de- 
vices have been simulated using the NS3D code [21, 221. 
In the present study, the flows of interest are assumed non- 
Newtonian to account for the shear thinning behavior of the 
huinan blood. The governing equations are the three- 
dimensional, unsteady, incompressible Navier-S tokes equa- 
tions coupled with non-Newtonian models. The solution 
algorithm is based on the method of artificial compressibil- 
ity and dual time stepping. The resulting incompressible 
Navier-Stokes equations can be written in tensor notation 
form as: 

a7. atl, a .u.)'-*+li+ 0. 

at ax, J a.ri asj &-I (2)  

The shear stress tensor, T,, is defined as: 
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where ,a and 7 are molecular and apparent viscosity, 
respectively. S, is the mean strain-rate tensor and f is 
the shear rate defined as a fbnction of the second invariant 
of S, in three-dimensional problems: 

Deforniable wall model 
For moving wall boundaries, a first-order fluid-wall in- 

teraction model for the arterial wall distensibility is adopted 
based on the assumption of a thin-walled and linearly elas- 
tic channel. Compared with finite element methods [15, 161, 
this approach was found to be a standard first-order ap- 
proximation to the complex behavior of the arterial wall 
[14]. Embedding in and tethering to surrounding structures 
is thought to reduce the arterial longitudinal motion to a 
minimum [24]. In this wall model, blood vessels are as- 
sumed IO have circuiar, tiin ana eiasric wails wirh negiigi- 
ble longitudinal motion. The increments of blood vessel 
radius, r a r e  given by: 

The gravity force terms, gi are added to Eq.(2) to take 
gravitatiom! effects icta accaunt. With &e reference pres- 
sure at heart level, the blood pressure gradient due to height 
difference is also added to boundary conditions. 

Non-Newtonian models 
Two different types of non-Newtonian models are im- 

plemented into the N S 3 D  code [23] and evaluated through 
steady and unsteady computations. One is a Carreu-Yasuda 
model and the other is an extended Casson model. A Car- 
reau-Yasuda model in Eq. (6) describes the shear thinning 
behavior o f  blood flows with asymptotic apparent viscosi- 
ties at zero and infinite shear rates: 

where ;I and a define the width of the bansition region 
from Newtonian to power-law region, and n-1 is power-law 
slope as shown in Fig. 1 .  The constitutive panmeters for 
the human blood are given by: 

q, = 0.00348P0. S, 770 = 0. I5  18Pa. S, 
(7 )  

;I = 40.00s, a = 2.0, n = 0.356 

For an extended Casson model, 

where Ht is the hematocrit, Cr and C2 are coefficients de- 
termined for Ht = 40 percent as C,  =0.2(~vnlcrn')''' 

and C2 = 0.1 8(4.w.  s / cm2)'" based on the experimental 
data [8]. To a\:oid extreme values at lower shear rates, the 
apparent viscosity is confined within qma, = 0. I5 18Prr. s . 

where p , ,  and p ,  are transmural and reference pressure 
at wall, and the arterial wall distensibility D,, is defined 
as: 

1-v; r 
E h  

D,, =-- 

where h is the wall thickness, E and vp are the elastic 

modulus and Poisson's ratio of the arterial wall, respec- 
tively. For deformable walls, non-slip boundary conditions 
are replaced by moving wall boundary conditions using the 
Eq. (9) at each physical time step. 

Vascular bed modeling 
To make the problem computationally manageable, mi- 

nor arteries such as arterioles, venules and capillaries need 
to be truncated. Equivalent outflow boundary conditions 
should be imposed at the truncated positions. There is an 
analogy between arterial networks and electric circuits as 
shown in Fig. 2. A truncated artery is assumed to divide into 
N branches of the same size, for instance, iV equals two for 
bifurcation and three for trifurcation. Under this assumption, 
the outflow boundary conditions, especially for pressure, 
can be approximately determined by utilizing the electric 
circuit analogy and Poiseuille's theorem [25,4]: 

where Q 
resistance. 

is mass flow rate, p is pressure, and R is flow 
At the klh bifurcation (or trifurcation), its mass 

flow rate is Ntimes of flow rate through the (k-ly'branches. 
Assuming that the flow resistance ratio f is constant, the 
pressure drop at each level can be expressed in a geometri- 
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cal series form: 

where A and t are sectional area and length of  the vessel, 
respectively. 

Arteriolar auto-regulation 
The flow resistance ratio f in Eq.( 12) is usually un- 

pressure difference between a truncated position and the 
vascular bed. The arteriolar bed varies its flow resistance 
dynamically by dilating or constricting in order to maintain 
the constant blood flow within a certain range of the perh- 
sion pressure. To model this auto-regulation mechanism in 
the arteriolar bed, as well as to determine the adequate 
value ofl; the arteriolar auto-regulation (AAR) algorithm is 
developed here by coupling the vascular bed modeling with 
the auto-regulation mechanism: 

knoxjj> 2nd thus should be gi:;pn to z\j\ioi.i ~firpa!istic 

n+l . n+l p,"'' - &+I = p,.ef +Re Q, (13) 
- Pref + (1 - f"+')A'  

k, = aAt IT 

where a is given by 3.6 - 8.0 for the adequate autoregula- 
toiy response, and Tis  a cyclic period of the heart beat. 

MPI-OpenMP parallel processing 
An MPI-OpenMP hybrid version of the INS3D code [23] 

has been extended with the above numerical approaches 
and validated through coinparison with experimental data 
for both steady and unsteady non-Newtonian cases. Compu- 
tational experiments have been conducted utilizing the 
NASA Advanced Supercoinputing WAS) facilities at 
NASA Ames Research Center. 

Results and Discussion 
Code validation 

The steady non-Newtonian flow in a carotid bifurcation 
illust~-ated in Fig. 3 was calculated as the first validation 

problem. Anatomically, a pair of common carotid arteries 
(CCA) aiise from the ascending aorta of the heart and con- 
nect to'the brain through the neck. CCA are divided into 
internal (ICA) and external carotid arteries (ECA), respec- 
tively. Computations are conducted with the same flow 
condition of the experiment [26]. In the experiment, a blood 
analogy fluid (KSCN-X; KSCN-Xanthan gum solution) 
was used to mimic the shear thinning property of blood. 
The constitutive parameters of the Carreau-Yasuda model in 
Eq. (7) are modified based on the experimental data as fol- 
lowing: 

11, = 0.0022Pn. s, 7 i 0  = 0.022Pa. s, 
/z = 0.1 Is, a = 0.644, n = 0.392 (1 4) 

Likewise, a parameter of the extended Casson model is 
modified as C, = 0.4(dyri/cm2))''' for this analogy fluid. 

The Reynolds number based on the CCA diameter is 270, 
and the flow division ratio of  ECA over CCA is 0.45. The 
inflow in the CCA is assumed hlly developed and multiple 
outflow boundary conditions for ICA and ECA are deter- 
mined using the AAR algorithm in Eq. (13) based on the 
flow division ratio. Figure 4 (a) and (b) show the compari- 
son of axial velocity profiles in the ICA using two different 
nonNewtonian models. The results of the INS3D with 
chimera overset grids are compared with those of  lFANS3D 
[27] with multi-block grids, and also compared to the ex- 
perimental data. Axial velocity profiles are skewed towards 
the flow divider and the adverse pressure gradient with the 
increase of the sectional area results in a secondary flow 
pattern in the sinus of the ICA. The flow reaccelerates after 
passing through the maximum diameter region. Since two 
non-Newtonian models gave a similar result, the Carreau- 
Yasuda model was mainly used hereafter in all the compu- 
tations of non-Newtonian flows. 

For unsteady code validation, the pulsatile non- 
Newtonian flow in a 90 deg circular tube was simulated 
with the same flow condition of the experiment [28]. The 
same blood analogy fluid used in the previous steady case 
was also used in this case. The Reynolds number based on 
the tube diameter and diastole velocity is 300 and Womer- 
sley number is 7. The tube radius and its centerline radius 
of curvature are 4 and 24 millimeters, respectively. For pul- 
satile inflow boundary conditions, the experimental wave- 
form was successfully regenerated using twelve harmonics 
based on the Fourier theorem as shown in Fig. 5. Computed 
results are compared with the experimental data at three 
different phases: end diastole, peak systole, and begin dias- 
tole. Figure 6 shows the comparison o f  axial velocity pro- 
files on the plane of symmetry and the plane perpendicular 
to the symmetry plane. The computed results show a good 
agreement with the experimental data at a11 three phases. 

i 

i 
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Gravity Benchmark Problems 
Six-type Gravity Benchmark Problems (GBP) were 

originally presented to provide the Ikndamental understand- 
ing of gravitational effects on the human circulatory system, 
As shown in Fig. 7, GBP-0 stands for microgravity and 
GBP-1 represents the human body in supine posture under 
normal gravity on Earth. Among six problems, let us dis- 
cuss GBP-2 and 3 cases representing the upper and lower 
part of the human body in standing posture, respectively. 
Test model is a U-tube with a diameter of 8 millimeters and 
a curvature ratio of 4. The fluid is assumed Newtonian with 
a viscosity of3.5cPoise and the Reynolds number based on 
the tube diameter is 169. Figure 8 shows a comparison of 
axial velocity profiles between rigid- and deformable-wall 
cases at the 90 deg station. A first-order fluid-wall interac- 
tion model in Eq. (9) was adopted for wall moving bound- 
ary conditions, and the wall distensibility factor is given 
about five times larger than that of normal arteries to bring 
gravitational effects into relief. Even though not all shown 
here, the gravitational effect on the internal flow within 
rigid wall was found to be minor. 

Table I. Comparison of required power for CBP-2 and 3. 

GBP-3 

I I I I I I 

For GBP-2 W (GBP-2 with deformable wall), however, 
tube diameter is contracted by about 5 %D because of the 
decreased pressure due to gravity. Conversely for GBP3W, 
the diameter is expanded by 5 %D because of the increased 
pressure. As flow resistance is, according to Poiseuille’s 
formula, inversely proportional to the fourth power of tube 
radius, GBP-2W requires about 16 percent more power and 
GBP-3W requires about 10 percent less power as shown in 
Table 1, where Ap denotes pressure difference between 
inflow and outflow. 

GBP provide a preliminary knowledge that gravity has 
considerable effects on deformable wall motion and conse- 
quent flow patterns in the human circulatory system. 

Effect of arterial wall distensibility 
Pulsatile blood flow through the same carotid bihrcation 

model used for code validation was computed with the 
mean flow rate of 8 mlis in the common carotid artery 
(CCA) with a Reynolds number of 388. Figure 9 shows a 
moving wall grid at maximum displacement together with 

the baseline rigid-wall grid. For this carotid model, the arte- 
r i d  wall thickness is 0.3 millimeter for the CCA, 0.23 and 
0.21 millimeter for the internal (ICA) and external carotid 
artery (ECA), respectively. A smooth connectivity in wail 
thickness between the CCA and its branches is enforced. 
The elastic modulus E is given by 3 .0~10~dynes / cm’  
and the Poisson’s ratio vp is 0.49, which represents a 

nearly incompressible isotropic wall property [14, 151. The 
bifurcating apex is geometrically constrained to prevent 
unrealistic rigid body motion. Figure 10 shows particle 

eration, @) systolic deceleration, and (c) minimum flow 
rate. During a pulse cycle, the distensible wall case shows a 
maximal displacement of about 8 percent of vessel diameter 
around the bifurcating apex. At the systolic deceleration 
phase, the increased vessel diameter reduces the axial ve- 
locity profiles compared with the rigid wall results. Much 
like the steady-state results, a strong skewing toward the 
flow divider walls occurs. After the peak systole, a secon- 
dary reversed flow occurs and extends along the sinus until 
the diastole begins. The wall distensibility due to the pulse 
alleviates the amplitude of wall shear stress locally up to 16 
percent compared with the results under the rigid wall as- 
sumption as shown in Fig. 11. The temporal wall shear 
stress at the point C in the ICA sinus indicates the progress 
of massive flow separation and reattachment on the outer 
wall of the sinus during t /T= 0.22 - 0.54 in both distensible 
and rigid wall cases. 

In addition, the effect of wall distensibility under differ- 
ent gravity conditions is presented in Fig. 12. Computed 
results for microgravity (or approximately supine posture 
under normal gravity), standing and hand-standing condi- 
tions are compared. For the standing case, the normal one- 
G gravity force (or 1 G) is applied downward. For the hand- 
standing case, the gravity force is applied toward the head, 
Le., it is negative (or -1G). The relative diameter change 
(D-,G - & ) / D I G  is up to 14 percent during the systolic 
deceleration phase, which corresponds to a 41 percent re- 
duced vessel resistance &om Poiseuille’s theorem in Eq. 
( 1  1). Wall shear stress distribution in Fig. 13 indicates that 
the reversed flow zone in the ICA sinus becomes narrower 
as the diameter increases. It is observed that the altered 
gravity has a significant influence on fluid-wall interactions 
throughout the pulse cycle. 

&aceb ai i1irCc Jil&Giii pos~;ons in +) sysro;iz axe;- 

Blood circulation in the human brain 
There are two arterial pairs that supply blood to the brain. 

One pair is the internal carotid artenes (ICA) and the other 
is the vertebral arteries. The vertebral arteries are distally 
combined into the basilar artery (BA) that ends by dividing 
into the two posterior cerebral arteries (PCA). Two ICAs 
and BA are connected to an important part of the brain, the 
so-called Circle of Wills (COW). COW sits on the base of 
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the brain. Its main function is to distribute blood evenly 
throughout the brain. 

Collateral circulation under auto-regulation 
To provide a fundamental understanding of the mecha- 

nism of collateral circulation under auto-regulation, an ide- 
alized COW configuration was designed based on anatomi- 
cal measurements [2, 31 with minor arteries truncated. Fig- 
ure 11 shows a chimera overset grid with ten domains for 
this idealized configuration, which results in a total of 0.3 
million grid points. The mean flow rate in the ICA is 3.5 
ml/s and the Reynolds number is 240 based on the ICA di- 
ameter. 

When one of the main arteries in the brain is stenosed or 
even missing, the distal smaller arteries can receive blood 
from the other arteries through COW. To simulate this inter- 
esting mechanism of “co!lateral circulation” under auto- 
reguktinn, !he left ICA is presr!med 20 percent stenosed. 
This means that only 80 percent of the normal supply of 
blood is delivered to COW through the left ICA as indicated 
in Fig. 15. Unlike the balanced configuration case, the mass 
flux through the posterior communicating arteries (PCoA) 
is considerably increased to compensate for the deficiency 
in the left middle cerebral arteiy (MCA). On the other hand, 
the mass flux through the proximal part (A1 segmentj of the 
left anterior cerebml artery (ACA) is decreased by 26 per- 
cent in order to distribute the blood as evenly as possible. 
Figure 16 shows the time-dependent auto-regulatory proc- 
ess using the AAR algorithm introduced in Eq. (10). It is 
observed that this AAR algorithm is robust and consistent 
for a wide range of physical time steps (dt = 0.057‘ to 
0.2527. About 10 seconds after the sudden stenosis in the 
left ICA, the left MCA and ACA have regained their refer- 
ence flow rates. The present simulation shows a good ex- 
ample of collateral circulation in the brain under auto- 
regulation. 

Effecls of altered gravity 
An anatomically realistic COW geometry was three- 

dimensionally recons tmcted from human-specific magnetic 
resonance (MR) angiography (MRA, provided by T. David) 
using image segmentarion techniques as illustrated in Fig. 
17. The raw MR images were converted to the RGB 
graphic file format for efficient numerical keatments. After 
extracting the segments of interest by filtering the voxels 
with intensities below a certain threshold, a segment outlin- 
ing aIgorithm was used to display the extracted objects on 
each sectional layer with very little computer memoiy. 
Consequently, a chimera overset grid system with thirty-one 
domains was generated for this geometry as shown in Fig. 
18. To demonstrate the effects of altered gravity, a com- 
puted result under a nonnal 1G gravity (Le., standing pos- 
ture) was compared with results for -1G (i.e., hand-standing 
poshire). For both cases, the total inflow mte through the 

left and right ICAs and the BA is assumed the same because 
the auto-regulation is known to supply constant blood flow 
regardless of altered pressure to a certain extent. For disten- 
sible wall motion, local changes of the wall distensibility 
factor, D,, in Eq. (10) were given by introducing different 
ratios of vessel radius and wall thickness to each arterial 
component. Based on the experimental measurements [ 121, 
large cerebral arteries (internal carotid, vertebral artery) are 
assumed to have about five times smaller D,, compared 
with smaller arteries such as anterior cerebral arteries 
(A-C-4). The FZ! !  distecsihi!ity at the er te r j~ !  cc~;ucctions 
was neglected to avoid the unrealistic rigid body motion. 
Smooth transition in wall distensibility factor between each 
conjunction and its arterial branch was given. Figures 19 
and 20 show the blood flow distribution through the realis- 
tic COW configuration under 1G and -1G respectively. In 
both cases, the mass flux through PCoA is very low. For the 
i G  case, the biood pressure is decreased by about 25 
minHg. This causes about 16 percent contraction in ACA 
diameter. On the other hand, the increased pressure due to 
the hand-standing posture causes a maximum increase in 
ACA diameter up to 15 percent. Overall the magnitude of 
flow velocity is decreased to maintain the same flow rate 
with 1G case. 

Summary 
Numerical models based on computational fluid dy- 

namics were developed to simulate the local hemodynamics 
in the human circulatory system, and then applied to a real- 
istic carotid artery and brain arterial trees. The solution pro- 
cedure for non-Newtonian flow computatiops was validated 
through the comparative shidy with steady and unsteady 
experiments. Good agreement was obtained for both cases. 
For the realistic car0 tid artery model, the wall distensibility 
had a quantitative influence on defonnable wall motions 
and wall shear stress distribution under altered gravity. In 
addition, fundamental understandings of the collateral cir- 
culation under auto-regulation and the gravitational effect 
on fluid-wall interactions were obtained using both ideal 
and realistic Circle of Willis configurations. The AAR algo- 
rithm based on the vascular bed modeling and auto- 
regulation was assessed and found to be most useful for the 
problems with multiple outflow boundaries. The present 
solution procedure based on parallel computing has shown 
its ability to model the multi-scale hemodynamics for vari- 
ous aspects of the human circulatory system. 
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Fig. 1 Variation of blood viscosity due to shear rate. 
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Fig. 2 Analogy of arterial network to electric circuit. 

Fig. 3 Schematic definition of a carotid arterial bifurcation. 

(a) Carreau-'iasuda model 
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Fig. 4 Axial velocity profiles on the symmetry (upper) and its 
perpendicular plane (lower) in the ICA. 
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Fig. 5 Inflow waveform regenerated using 12 harmonics. 
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Fig. 7 Sir-type gravity benchmark problems (GRP). 
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Fig. 8 Comparison of axial velocity profiles at 90 deg station 
between rigid- and distensible-wall cases. 
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Fig. 6 Comparison of axial velocity profiles hetween computa- 
tion and experiment at three different phases. 

Fig. 9 Distensible wall motion due to fluid-wall interaction. 
(inner - rigid wall, outer - distensible wall) 
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Fig. 11 Temporal wall shear stress during the pulse cycle at  

three different points around the ICA sinus. 
(ICA: Internal carotid artery, ECA: External carotid artery) 

(h) Systolic deceleration phase (UT= 0.36) 
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(c) Minimum flow rate phase ( t /T= 0.58) 

Fig. 10 Streaklines through a carotid arterial bifurcation a t  
three different phases in pulsatile flow rate. 

Fig. 12 Gravitational effects on wall motion and axial velocity 
profiles at  systolic deceleration phase. 
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Fig. I 3  Gravitational effect on wall shear stress distribution 
during the systolic deceleration phase. 

AC.4: Anterior Cerebral Artery, -4CoA: Anterior Communiciiting Artery, 

IC.4: lntemal Carotld htzry,  MCA: Middle Cerebral Artery, 
PC.4: Posterior Cerebral Artery, PCo.4: Posterlor Communicating .Artcry. 

Fig. 11 Chimera overset grid with ten domains for an idealized 
Circle of Willis configuration. 
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Fig. 15 Collateral circulation with the left internal carotid ar- 
tery 20 % stenosed under auto-regulation. 
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Fig. 16 Percent changes of flow rate in left middle and anterior 
cerehral arteries under auto-regulation. 
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Fig. 17 Image segmentation from a magnetic resonance image 
for a human-specific Circle of Willis. (MRA provided by T. 

David) 

Fig. 19 Timeaveraged blood flow within compliant walls in 
standing posture (1G). 

Fig. 18 Three-dimensional reconstruction of an anatomical 
Circle of Willis configuration. 

Fig. 20 Timeaveraged blood flow within compliant walls in 
hand-standing posture (-IC). 


